Tetrahedron Letters No. 23, pp 1991 - 1994, 1976. Pergamon Press. Printed in Great Britain.

THE EFFECT OF POLAR SUBSTITUENTS ON THE SOLVOLYSIS OF SECONDARY AND TERTIARY 2-NORBORNYL DERIVATIVES¹.

D.Lenoir^{**}, W.Röll, E.Weiss, and G.Wenke

Organisch-Chemisches Institut der Technischen Universität D 8000 München 2.

(Received in UK 5 April 1976; accepted for publication 16 April 1976)

The origin of the large <u>exo-endo</u> (I/II) rate ratios in solvolysis of epimeric 2-norbornyl brosylates² is still under debate³. To probe this problem, we studied previously the influence of polar substituents⁴ at C-1 on solvolysis of <u>exo-and endo-2-norbornyl</u> sulfonates⁵. Electron-withdrawing groups decelerate the rate of 2-<u>exo-norbornyl</u> tosylate much more than the 2-<u>endo</u> isomer and, as a result, a strong reduction of k_{exo}/k_{endo} is observed⁵.

Since groups at C-1 $\max_{a,y} exert$ not only electronic but also steric influences,we have now studied the effects of two remotely attached groups (at C-5) with different polarities: ethylene ketal (compounds III and IV) and geminal dichloro (compounds V and VI).These groups should not manifest the steric influence on the reaction demonstrated previously for mono 5- and 6-<u>exo</u> substituents⁶.

Solvolysis of tertiary 2-methyl-2-norbornyl benzoates (compounds VII and VIII) are supposed to proceed via classical carbocations⁷. Since the influence of polar substituents on the solvolysis of tertiary 2-norbornyl derivatives has not been studied,we investigated the effect of the ethylene ketal group on the isomeric 2-methyl-2-norbornyl 3,5-dinitrobenzoates (compounds IX and X).

Compounds III-X (see table I) were prepared from 5-<u>exo</u>-acetoxy-2-norbornanone⁸ by appropriate functionalization of the keto group and subsequent derivatization of the acetoxy group⁹. The solvolysis rates of the sulfonates I-VI were determined in 60% aq. ethanol.Since deactivated 2-norbornyl sulfonates as well as $2-\underline{endo}$ -norbornyl brosylate (II) are likely to react by nucleophilic solvent participation in normal solvents,⁵ the rates of the brosylates I-IV were also determined in 97%

1991

Table I.Summary of Solvolysis Rates of Norbornyl Derivatives I-X									
Compound	Solvent	Temp [⁰ C]	<u>k</u> a [sec ⁻¹]	∆H[kcal/ ^O mole]	⊿s [‡] [e.u.]	k <u>exo</u> /k <u>endo</u>			
	60%Ethan-	25.0	8.3 x10 ⁻³			858			
	01 97% HFIP ^b	-4.7	1.74×10 ⁻²						
	97% הרוף	0.1	3.77×10^{-2}						
		5.25	5.45×10^{-2}	15.6	-8.0				
		9.20	8.20×10 ⁻²	12.0	-0.0				
		9.20 25.0 ^C	3.91x10 ⁻¹			1746			
	60%Ethan-	<u>25.0</u> 74.9	2.28x10 ⁻³			1740			
	ol	49.6	1.76×10 ⁻⁴	21.9	-7.9				
	01	49.0 25.0 ^C	9.67×10 ⁻⁶	21.9	-7.5				
	97% HFIP	25.0 50.1	2.54×10^{-3}						
II OBs	97% HFIP	25.0 ^C	2.54×10^{-4}	18.0	-15.0				
	60%Ethan-	25.0 75.3	1.71×10^{-3}	10.0	-15.0				
Cots III OBs	ol»Ethan-	75.3 50.1	4.84×10^{-5}	25.0	0.3				
	01	25.0 ^C	3.30×10^{-6}	25.0	0.5	57.1			
	97% HFIP	25.0 52.9	1.34×10^{-3}			57.1			
	97% nr 1P	24.4	6.73×10^{-5}	19.6	-11.7				
		24.4 25.0 ^C	7.21×10^{-5}	19.0	-11,7	26.6			
			3.75×10^{-4}			26.6			
	60%Ethan-	99.4 75.0	3.13x10 ⁻⁵	25.4	с г				
To A	ol	75.0 25.0 ^C	5.78x10 ⁻⁸	25.4	-6.5				
			4.32×10^{-4}						
	97% HFIP	75.0			1.5.0				
IV ÓBs		49.9	4.11×10^{-5}	20.3	-16.0				
k		25.0 ^C	2.71×10^{-6}						
d U OTres	60%Ethan-	80.6	9.20×10 ⁻⁴						
	01	55.8	4.76x10 ⁻⁵	21.6	-12.8	_			
۷	1	25.0 ^c	1.42×10^{-6}			9.4			
d d	60%Ethan-	99.5	2.10×10 ⁻⁴						
	01	80.7	2.64×10 ⁻⁵	20.1	-22.0				
		55.8	4.65×10^{-6}						
VI OTres		25.0 ^C	1.51×10^{-7}						
		100.0	4.20×10 ⁻³			150.0			
	one								
		100.0	2.80×10 ⁻⁵						
VIII ODNE	one		• 4			<u>. </u>			
ODNB	1	100.0	1.04×10 ⁻⁴			24.2			
IX CH ₃	one		-6						
Сод СН3	1 1	100.0	4.30x10 ⁻⁶						
X CDNB	one					1			
a									

^A CDNB <u>I</u> <u>I</u> ^a Determined conductometrically, average of two runs, deviation not more than ±3% ^b Det. conductometrically, using a high speed recording technique ^C Calculated from rates at other temperatures ^d Tres = SO₂CH₂CF₃; no ionic chlorine could be detected after solvolysis of two half-lives hexafluoroisopropanol (HFIP). This solvent has been shown to have very low nucleophilicity¹⁰.Hence,solvolysis should occur without nucleophilic solvent participation; consequently the k_{exo}/k_{endo} value should reflect the difference of the true carbonium ion reactivity of 2-norbornyl isomers. Unsubstituted (VII and VIII) as well as 5-substituted 3,5-dinitrobenzoates (IX and X) were solvolysed in 60% ag. acetone at 100⁰. The kinetic results are summarized in Table I. The following conclusions can be drawn from these results: 1. The magnitude of the value k_{exo}/k_{endo} of unsubstituted,epimeric 2-norbornyl brosylates depends on the solvent. In less nucleophilic solvents like TFA¹¹,TFE⁵ and HFIP the value is increased in comparison with 350, found in acetic acid². The ratio, 1746 ,calculated for solvolysis in HFIP at 25.0° ,is of the same magnitude found for the ratio of HOAc polarimetric rates.² Therefore,the absence of internal return for the exo-brosylate I and of nucleophilic solvent assistance of the endo-brosylate II is a likely explanation of this behavior. 2. Polar substituents decelerate the rate of either epimeric brosylate; The rates of exo brosylates are reduced more than the endo isomers, depending on the polarity of the group. Thus, for the gem-dichloro group, the k_{exo}/k_{endo} value is strongly reduced from 858 to 9.4. The rate constants of either series can be correlated by a Hammett-Taft treatment.¹² Table II summarizes these results together with those of some 1-substituted 2-norborny1 tosylates.⁵

Table II.Hammett-Taft plot¹² of epimeric 1-and 5-substituted 2-norbornyl sulfonat

Series of	Substituent R ¹³	3*	Series of	Substituent R ¹³	*و
<u>exo</u> -compounds		(Corr.c.)	<u>endo</u> -compounds		(Corr.c)
T	CN,CO ₂ CH ₃ ,H,	-5,00		CN, OCH3, CO2CH3	-2.34
BLOTS	СН3, С2Н5	(0.989)	ROTR	С6H5, H, CH3, C2H5	(0.976)
RIA	C12,0CH2CH20	-2.62	B S	C1 ₂ ,OCH ₂ CH ₂ O,	-1.65
" L OBs	осн _з ,н	(0.996)	OBs	оснз,н	(0.994)

It is apparent that the response of the transition state of solvolysis of secondary <u>exo</u>- and <u>endo</u>-norbornyl sulfonates is quite different towards substituents,¹⁴ esp. when more polar substituents are employed. This is to be expected when the transition state of the <u>exo</u> sulfonate I is stabilized by G-delocalization or another electronic effect.

The reduction of the value k_{exo}/k_{endo} for the ethylene ketal brosylates II and III is still observed in HFIP; therefore this reduction is an effect of true carbonium reactivity of deactivated 2-norbornyl isomers without solvent assistance; solvolysis of epimeric, deactivated norbornyl sulfonates does not show a common intermediate in normal solvents.

3. The polar ethylene ketal group reduces the exo/endo ratio in the series of tertiary 2-norbornyl benzoates VII and VIII from 150 to 24. This reduction is much less pronounced than in the secondary series.

e s

Investigation of additional electronegative $5-\underline{exo}$ -substituents on the solvolysis of 2-norbornyl brosylates and detailed product studies is in progress.¹⁵

Acknowledgements: This work was supported by <u>Deutsche</u> Forschungsgemeinschaft. We thank Professors P.v.R. Schleyer and A. Streitwieser, Jr. for their critical comments.

REFERENCES:

- 1. Part V of the series, "On σ -bridged Carbonium-Ions", Part IV,see ref.5
- For a review, see G.D.Sargent, in "Carbonium Ions", G.A.Olah and P.v.R.Schleyer, Ed., Wiley Interscience Publishers, New York, 1971, vol. 3, p. 1099
- 3. H.C.Brown, Tetrahedron, 32, 179(1976)
- 4. For the effect of polar substituents on the solvolysis of 2-norbornyl sulfonates see J.W.Wilt, and W.J.Wagner, J.Amer.Chem.Soc. <u>90</u>,3135(1968); R.Muneyuki, and T.Yano, ibid. <u>92</u>,746(1970); P.v.R.Schleyer, P.J.Stang and D.J.Raber, ibid. <u>92</u>, 4725(1970); J.L.Greever and D.E.Gwynn, Tetrah.Lett.,813(1969); G.W. Oxer and D.Wege, ibid. 457(1971); P.G.Gassman, J.L.Marshall, and J.G.Macmillan J.Amer.Chem.Soc. 95,6319(1973)
- 5. D.Lenoir, Chem.Ber., 108, 2055(1975)
- 6. E.J.Corey and R.S.Glass, J.Amer.Chem.Soc. 89, 2600(1967)
- 7. S.Ikegami, D.L.Van der Jagt, and H.C.Brown, J.Amer.Chem.Soc. 90,7124(1968)
- 8. J. Meinwald and J.K.Crandall, J.Amer.Chem.Soc. 88,1292(1966)
- 9. The ir and nmr spectra of all new compounds are in agreement with their structures.Satisfactory elemental analyses were obtained. Experimental details will be published elsewhere
- 10.L.F.Schadt, P.v.R.Schleyer, and T.W.Bentley, Tetrah.Lett. 2335(1974)
- 11.J.E.Nordlander, R.R.Gruetzmacher, W.J.Kelly, and S.P.Jindal, J.Amer.Chem.Soc. 96, 181(1974)
- 12.R.W.Taft in "Steric Effects in Organic Chemistry", M.S.Newman, Ed., John Wiley, New York, 1956, p.595
- 13.Taft G^{\pm} constants were taken from P.R.Wells, "Linear Free Energy Relationships", Academic Press,London,1968; log k/k_H values were plotted against G^{\pm} -values; k(Tres)/k(OBs)=33 was used for compounds V and VI.
- 14.A different conclusion was obtained recently by S.Banerjee,and N.H.Werstiuk, Can.J.Chem.,in press
- 15.Y.Apeloig, D.Lenoir, and P.v.R.Schleyer, in preparation